Dose concept of oncological hyperthermia: heat-equation considering the cell destruction.
نویسندگان
چکیده
We shall assume, of course, that the objective of hyperthermia is to destroy the malignant cells. Destruction definitely needs energy. Description and quality assurance of hyperthermia use the Pennes heat equation to describe the processes. However the energy balance of the Pennes-equation does not contain the hyperthermic cell-destruction energy, which is a mandatory factor of the process. We propose a generalization of the Pennes-equation, inducing the entire energy balance. The new paradigm could be a theoretical basis of the till now empirical dose-construction for oncological hyperthermia. The cell destruction is a non-equilibrium thermodynamical process, described by the equations of chemical reactions. The dynamic behavior (time dependence) has to be considered in this approach. We are going to define also a dose concept that can be objectively compared with other oncological methods. We show how such empirical dose as CEM43oC could be based theoretically as well.
منابع مشابه
THE EFFECT OF HYPERTHERMIA ON THE DIFFERENTIATION OF LEUKEMIC CELL LINES
Treatment of human promonocytic leukemic cell line U937 with mild hyperthermia in the temperature range of 40-43°C resulted in differentiation of these cells into monocyte/macrophage-like cells in a heat dose and time dependent manner. This process was accompanied by marked morphological, functional and proliferational changes. U937 cells which normally grow in supension in the logarithmic...
متن کاملInduced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملHyperthermia Increases Natural Killer Cell Cytotoxicity against SW-872 Liposarcoma Cell Line
Background: Although there is convincing data in support of the effectiveness of hyperthermia in tumor therapy, the molecular mechanisms underlying the clinical effects of hyperthermia are still poorly understood. Objective: To investigate natural killer (NK) cell cytotoxicity against heat-treated SW-872 and HeLa tumor cell lines. Methods: NKG2D ligands and HLA class I transcription were examin...
متن کاملStudy on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملMeshless analysis of casting process considering non-Fourier heat transfer
Casting is considered as a major manufacturing process. Thermal analysis of a solidifying medium is of great importance for appropriate design of casting processes. The conventional governing equation of a solidifying medium is based on the Fourier heat conduction law, which does not account for the phase-lag between the heat flux and the temperature gradient. In this paper, the concept of phas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cancer research and therapeutics
دوره 2 4 شماره
صفحات -
تاریخ انتشار 2006